
 RISC OS Audio input and output

Introduction and Overview
This document describes the new Audio interface module – AudioConductor – and how it relates to the
existing APIs available in earlier versions of RISC OS.

Audio capabilities – a brief history

Audio output

The first versions of RISC OS had a 1-8 channel audio sound output system that supported an 8-bit µ-
Law based audio playback.

Later on, a 2-channel (stereo) 16-bit linear PCM (LPCM) was added to the hardware capabilities, with
existing audio supported via a mechanism to translate the µ-Law audio into the 16-bit linear PCM
format.

At a later stage, a mechanism was created that allowed different audio playback applications to share
the sound system by merging the audio playback data together.

Audio input

No version of RISC OS has ever supported a generic audio input capability. Independent vendors had
their own solution, and some published their mechanisms to allow other vendors to use their hardware
within audio capture software

Audio devices

Within the legacy ARM hardware, audio was part of the video hardware; the VIDC1 and VIDC20 had
methods to read data (via the MEMC), and play it back via audio hardware.

With more modern system on a chip (SoC) hardware, audio is separated from the video, and has
dedicated registers controlling the flow of the data. These are generally I²S-based, which is a simple
digital mechanism for transferring audio data to a digital to analogue converter (DAC). They also have
the capability of providing audio input, using an analogue to digital converter (ADC).

Vendors of RISC OS hardware have replaced the VIDC interfaces with on-device audio output –
although the underlying mechanism has not changed.

Audio APIs

All existing APIs follow the same basic method – a buffer is provided for the audio playback software
to populate with data that will be output via the hardware interface.

A double-buffer approach is taken, where the software is filling one sound buffer while the hardware is
emptying another. When the hardware has emptied the buffer, an interrupt is used to tell the operating
system that it needs new data, and the operating system gives the hardware the buffer the software has
just filled.

The software then fills the second buffer with data in preparation for the hardware to play.

Audio capabilities – a brief history

8-bit µ-Law audio

This API dates back to the original Archimedes computers. The number of sound channels is
configured by software that is performing the playback.

The sound system had the capability of providing up to 32 different ‘voices’, or instruments, and
these could be scheduled to play with the BASIC SOUND command (or via SWI calls). These
voices filled the audio buffers with the data that is needed to play the audio.

Some software intercepted the built-in sound scheduler in order to provide more functionality,
or improved performance when playing multiple sounds.

Few programmes use this – !Maestro is about the only one, although the system error “beep”
still relies on this mechanism.

16-bit single application audio

With the later RiscPC hardware, 16-bit stereo audio capability was added. In order to support
this, two changes were made:

• The 8-bit µ-Law audio worked as before – voices fill a buffer with the sound data.
However, when complete, the data is translated to 16-bit stereo data.

• A 16-bit buffer fill API was provided that applications can provide the data with 16-bit
stereo audio data.

Applications using the 16-bit API are informed if there is 8-bit data present in the buffer in order
to merge the sound – however, some applications ignore this and overwrite their data all of the
time.

These applications implement a Linear Handler that is called when more audio data is required.
The sound system is triggered by a hardware event that indicates that data is required, and this is
passed to the Linear Handler so that it can fill the buffers.

Shared audio

In order to accommodate multiple audio streams using the hardware at the same time, an API
was developed to allow applications to share the audio hardware output.

This has similar concepts to a Linear Handler, except that applications must:

• Cope with other applications using the audio system

• Work at (potentially) a different sample rate to what it is expecting

2

8-bit voice
generators

Legacy
application

8-bit
hardware

8-bit voice
generators

Legacy
application

16-bit
hardware

8-bit to 16-bit
translator

Linear
handler

16-bit
application

Audio capabilities – a brief history

The Shared Audio system is implemented as a Linear Handler, and can be replaced by a
different Linear Handler if an application desires it.

An application that has been written as a standard linear handler, rather than a shared linear
handler, can hook into the sound system, and this stops all shared applications from being able
to use the sound system.

AudioConductor API
The AudioConductor API is designed to provide a future-resistant mechanism for audio
playback and capture whilst providing a degree of backward compatibility for earlier
applications. The level of backward compatibility may change in the future as more applications
support the AudioConductor mechanisms.

It has a number of design goals, including:

• Higher audio precision

• More than one output device

• Multi-channel audio devices

• Non-LPCM encoding

Higher audio precision

When the sound system was changed to allow 16-bit digital audio, this was the quality that was
expected – 24-bit and 32-bit was in its infancy (and expensive).

With more modern technology, inexpensive audio devices are available that support 24-bit audio
and the higher resolution available cannot be used by RISC OS applications.

The AudioConductor API uses 32-bit audio data paths for LPCM formatted data. This is higher
than most audio devices can cope with, but has been chosen for the following reasons:

• It is unlikely to need to go to a higher resolution as the human ear has its limitations

• It is the ARM processor’s native word size, so is a programmatically efficient encoding

3

8-bit voice
generators

Legacy
application

16-bit
hardware

8-bit to 16-bit
translator

Linear
handler

16-bit shared
application

16-bit shared
application

Shared
linear handler

Shared
linear handler

16-bit shared
application

Shared
linear handler

Shared
sound

AudioConductor API

More than one output device

With the advent of USB and Bluetooth, computers can often have several devices that are
capable of audio playback and capture.

Users would tend to use a single audio device, and the user would configure which of their
devices they want to use.

Some users have multiple audio devices, and would switch between them depending on
circumstances. For example:

• Using a USB headset when making voice calls

• Using a Bluetooth headset for privacy

• Using a high quality, multi-channel device for music composition

Multi-channel audio devices

While 2-channel (stereo) is “multi-channel”, multi-channel audio devices refer to devices that
have more than 2 channels – for example, surround sound devices, and professional audio
devices whose outputs are destined for a mixing desk.

Non-LPCM encoding

Previous RISC OS sound system implementations required the audio to be in a linear PCM
encoded format – however, some devices now support (or even require) non-LPCM formatted
data, which offloads the conversion of compressed audio files from the CPU to the audio device.

Procedural interfaces

The AudioConductor API defines four interfaces that applications and hardware developers can
use to provide and consume audio resources.

Discovery interfaces

This interface is used by both applications and hardware.

Applications use the discovery interface to find out about the audio capabilities of the system;
hardware uses the discovery interface to inform AudioConductor that audio hardware is
available, and its capabilities.

Control interfaces

This interface is used by both applications and hardware.

Applications use the control interface to configure aspects of the audio system (such as mixer
volumes and input selectors); hardware uses the interface to receive configuration requests from
applications.

Buffer manager

This interface is used by both applications and hardware.

Applications use the buffer manager to provide and retrieve data for audio playback and capture;
hardware uses the buffer manager to request data from the applications for playback, and inform
applications that data is available for capture.

4

Procedural interfaces

Codec interface

The codec interface is primarily used by applications, although it is envisaged that hardware
may use it at a later date.

The codec interface provides a method of converting one audio format into another audio format
– for example, a frame of MP3 data into LPCM data. It can even be used for more basic LPCM
format conversions (such as sample rate conversion, audio mixing or channel selection),

Hardware may use this interface to convert LPCM data into the hardware-native format.

Audio format descriptors
With many different audio formats available, a method to describe the format is required. The
simplest format – and the one that is currently supported by the sound system – is LPCM. Any
audio device driver should support 32-bit 2-channel LPCM format in order to maximise support
for applications, but other formats can be supported, if the applications support them.

The sample rate is not considered to be part of the format descriptor, although it is part of the
overall device configuration.

Format lists

When registering, a device informs AudioConductor what formats it is capable of supporting.
This is done via a pointer to a list of formats, each notionally 1 word in length.

If the word in the list is zero, then this denotes the end of the list.

If the word in the list has either of the bottom two bits set, then it is a simple format that consists
of a single word.

If the word in the list has both of the bottom two bits clear, then it is a pointer (or an offset) to a
value held in memory for an extended format.

Simple formats

The simple format descriptor consists of single 32-bit word, with one, or both, of the bottom two
bits set.

The format of this word is &nnnnnnxx where “nnnnnn” are bits used to describe the format, and
&xx is the format.

The values for &xx are as follows:

01 2-channel 32-bit LPCM format
02 2-channel 24-bit LPCM format
03 2-channel 16-bit LPCM format
05 2-channel 16-bit SoundDMA LPCM format
06 n-channel, m-bit LPCM format
07 n-channel, 8-bit µ-Law format
Others Reserved

5

Audio format descriptors

2-channel 32-bit LPCM format (format &01)

This format should be supported by all AudioConductor devices, as this is the native format that
applications must provide.

The “nnnnnn” bits are reserved and set to zero.

The format of a the data itself consists of two signed 32-bit integers per sample, with the first
integer being the left channel’s data, and the second integer being the right channel’s data.

Each integer is stored in little endian format, so a sample value of &12345678 is stored as &78,
&56, &34, &12.

Any buffer must be word aligned, and have a length of a multiple of words.

2-channel 24-bit LPCM format (format &02)

This format can only be used by applications registering exclusive access to the audio device
where the audio device supports it.

The “nnnnnn” bits are reserved and set to zero.

The format of the data itself consists of a pair of 3-byte signed integers per sample, with the first
of the three bytes giving the left channel’s data, and the last of the three bytes giving the right
channel’s data.

Each 3-byte value is formatted in little endian format, which means a sample of &123456 is
encoded as the bytes &56, &34, &12.

This format does not require the buffers to be word aligned.

2-channel 16-bit LPCM format (format &03)

This format can only be used by applications registering exclusive access to the audio device
where the audio device supports it.

The “nnnnnn” bits are reserved and set to zero.

The format of the data itself consists of a pair of 2-byte signed integers per sample, with the first
of the two bytes giving the left channel’s data, and the last of the two bytes giving the right
channel’s data.

Each integer is stored in little endian format, which means a sample of &1234 (left) paired with
&5678 (right) is encoded as the byte sequence &34, &12, &78, &56.

This format requires the buffers are word aligned.

2-channel 16-bit SoundDMA format (format &05)

This format can only be used by applications registering exclusive access to the audio device
where the audio device supports it. It is also the format that is supported by SharedSound and
SoundDMA interfaces.

The “nnnnnn” bits are reserved and set to zero.

The format of the data itself consists of a pair of 2-byte signed integers per sample, with the first
of the two bytes giving the right channel’s data, and the last of the two bytes giving the left
channel’s data.

6

Audio format descriptors

Each integer is stored in little endian format, which means a sample of &1234 (left) paired with
&5678 (right) is encoded as the byte sequence &78, &56, &34, &12.

This format requires the buffers are word aligned.

N-channel, m-bit LPCM format (format &06)

This format can only be used by applications registering exclusive access to the audio device
where the audio device supports it.

The top-24 bits are split into the top 16-bits giving a bit field indicating the channels present, the
next 4 bits the number of channels, and the last 2 bits the number of bytes per sample:

Bit(s) Description
0 – 7 &06 (format descriptor)
8 – 11 Number of bytes per sample

0 = reserved,
1 = 8-bit,
2 = 16-bit,
3 = 24-bit,
4 = 32-bit,
5 – 15 = reserved

12 – 15 Number of channels (1-15, 0 = reserved)
16 If set, left front data is present
17 If set, right front data is present
18 If set, centre front data is present
19 If set, low frequency enhancement data is present
20 If set, left surround data is present
21 If set, right surround data is present
22 If set, left of centre data is present
23 If set, right of centre data is present
24 If set, surround data is present
25 If set, side left data is present
26 If set, side right data is present
27 If set, top data is present
28 – 31 Reserved (0)

Note that the number of bits set in 16 – 31 does not need to equal the number of channels –
although it must not exceed the number of channels. This permits data for spacial locations that
are not defined in the above list to be present. The interpretation of such data depends on the
audio device.

The data is presented in the order of the bits set in 16 – 31, with any non-spatially aware data
after the spatially aware data. This means that if there are 5 channels present, with bits 16, 17
and 18 set, then the first data will be the left front channel, the second data will be the right front
channel, the third data will be the centre front data. The remaining two pieces of data are for the
non-spatially aware channels.

The buffer that holds the data does not need to be word aligned for 8-bit and 24-bit formats, but
must be for 16-bit and 32-bit formats.

7

Audio format descriptors

8-bit µ-Law format (format &07)

This format is only aimed at backward compatibility with earlier RISC OS systems.

Bits 8 – 10 of the format identifier are the number of channels (1, 2, 4 and 8 – the remainder are
reserved). The remaining bits (11 – 31) are reserved.

Stereo positioning of the data is not included in the channel data, but is included as part of the 8-
bit µ-Law configuration.

Each channel is presented as a single byte, as per the VIDC1 format (bit 0 = sign, bits 2 – 7 =
logarithmic value).

The buffer that holds the data does not need to be word aligned.

Other formats

Other format descriptors are yet to be defined, but are anticipated to be non-LPCM data, such as
MP3, or Bluetooth’s SBC.

These formats tend to be compressed, and will only be useable when a device is being used in
exclusive access – merging with existing data will not be possible.

For these formats, the data is likely to consist of frames, and buffers will be large enough to
contain one or more whole frames. The amount of data may be variable.

Audio handlers
In order for applications to send and receive data to an audio device, audio buffer handlers are
registered by the applications with AudioConductor.

Data is transferred to the audio device with a playback handler, and received from the device
with a recording handler.

Applications can either register for shared access to the audio devices, or they can register for
exclusive access.

Shared access

Shared access allow multiple applications to share an audio device, by mixing the audio
playback streams together. Audio capture data is passed to all applications interested in
recording audio.

All applications implementing shared audio playback must support 2-channel (or higher), 32-bit
linear PCM formatted data at any sample rate (that can change at any point) and mixing the
sounds from other applications.

Audio devices must also support this format, converting the data to or from the device’s native
format where necessary.

Exclusive access

Exclusive access precludes the ability for applications to share an audio device – but an
application can reconfigure the audio device to support different audio formats.

8

Audio handlers

As there is no need for applications to share the audio device, mixing and variable sample rates
do not need to be considered for the audio playback handler.

If an application already has exclusive access to an audio device, and another application
requests exclusive access, then the new application will have exclusive access. When the new
application relinquishes its exclusive access, then the previous application will regain the
access.

When the last exclusive application relinquishes its access, then the shared system will be given
control back again.

If a shared application joins the shared system while exclusive access is in use by another
application, then it will lie dormant until all exclusive applications have relinquished their
access.

In order to maintain the exclusive access, when an application registers for exclusive access on a
device, it is allocated a unique number. In order to perform operations on the device on an
exclusive basis, the application must pass this through to the relevant SWI calls. This also
prevents one application from overriding another application’s settings, which could cause
undefined results.

Playback handler code

The audio playback handler’s function is to provide data for the sound output. The code for all
formats is essentially the same.

On entry

R0 = pointer to buffer to fill
R1 = length of buffer (in bytes)
R2 = bit field (undefined for exclusive access)

Bit Description when set
0 Buffer contains existing data to be merged
1 Buffer will be merged down to a mono-channel output
2 – 23 Reserved
24 – 31 Volume (0 = silent, 255 = maximum)

R12 = value given when the playback handler was registered

On exit

R0 = pointer to byte after buffer was filled
Other registers must be preserved

Processor mode

Processor is in SVC or interrupt mode

Use

The current format and sample rate are not passed into this handler, as they can be queried via a
SWI call, or via the AudioConductor Service Call.

9

Playback handler code

Note that if bit 0 of R2 is zero on entry, then the whole buffer must be filled in, even if there is
not enough data in the application to fill it. In this case, the application must fill the rest with
zeros.

If bit 0 or R2 is set on entry, then the application can stop at its last sample, and does not need to
fill in the rest.

Recording handler code

The audio recording handler is called when there is data received from the audio device. The
code for all formats is essentially the same.

On entry

R0 = pointer to buffer containing data
R1 = length of data in buffer (in bytes)
R12 = value given when the recording handler was registered

On exit

Registers must be preserved

Processor mode

Processor is in SVC or interrupt mode

Use

The current format and sample rate are not passed into this handler, as they can be queried via a
SWI call, or via the AudioConductor Service Call.

Codec interface
Codecs can be provided by relocatable modules that have registered the source and destination
format with AudioConductor.

The codec interface is performed exclusively via Service Calls. Modules that implement codecs
need to handle the Service Calls and provide pointers to code accordingly.

Codec configuration handler

The codec initialisation handler is called to prepare the codec for data it needs to convert, or to
reconfigure itself for a different sample rate.

On entry

R0 = reason code
Other registers depend on reason code

On exit

R0 preserved
Other registers depend on reason code

10

Codec configuration handler

Use

This call is used to configure, reconfigure and terminate the codec.

Codec configuration 0

Get the size of the contextual data.

On entry

R1 = pointer to codec configuration

+0 Bit field for codec configuration
+4 Source format descriptor
+8 Source sample rate (in Hz, multiplied by 1024)
+12 Destination format descriptor
+16 Destination sample rate (in Hz, multiplied by 1024)

R2 = length of the destination buffer (in bytes), or 0 for undefined

The bit field is as follows:

Bit Value when set
0 – 3 Quality indicator (0 = low quality, 15 = highest quality)
4 Codec will need to merge with existing data
5 Source sample rate is the maximum sample rate (0 is average sample rate)
6 Destination sample rate is the maximum sample rate (0 is the average sample rate)
9 – 23 Reserved (0)
24 – 31 Volume (0 = silent, 255 = maximum)

On exit

R1 = the length of data required for the codec to store its contextual data

Use

This call is used to get the length of data the codec needs for its contextual data. The codec will
return the number of bytes that the codec user will need to allocate in order for it to function.

Codec configuration 1

Configures and initialises the codec.

On entry

R1 = pointer to codec configuration (as per Codec configuration 0)
R2 = length of the destination buffer (in bytes), or 0 if undefined
R3 = pointer to codec contextual data (if any was needed)

On exit

R1 = pointer to codec conversion code

Use

This is used to initialise a codec for the given source and destination configuration

11

Codec configuration 1

A codec may offer more than one ‘quality’ for its conversion, for example a codec that simply
converts from one sample rate to another may have a simple conversion where samples are
repeated or skipped, and another where some filtering is applied pre- or post- conversion to
reduce aliasing artefacts that can occur with the simplistic approach. The quality would
normally increase the amount of CPU activity required to perform the conversion.

Note that for non-LPCM formatted data, the sample rate may be variable – in which case the
sample rate will be the average or maximum sample rate depending on bits 5 and 6 of the bit
field.

Codec configuration 2

Reconfigures the codec.

On entry

Registers as per Codec configuration 1

On exit

R0 = 0 for codec needs to be reinitialised from the beginning
= 1 for codec has been reconfigured
Other values reserved

R1 = pointer to codec conversion code

Use

This is used by the codec user to indicate that some of the parameters have changed, and the
codec needs to work differently.

If R0 is 0 on exit, then the codec is no longer relevant at all, and the codec needs to be
destroyed, and a new codec created (with memory allocated).

Note that the codec conversion code pointer may change when the codec is reconfigured.

Codec conversion handler

The codec conversion handler is called to perform the conversion from one format to another
format.

On entry

R0 = the pointer to the source buffer
R1 = the length of the data in the source buffer
R2 = the pointer to the destination buffer
R3 = the length available in the destination buffer
R12 = the pointer for the codec contextual data

On exit

R0 = the pointer to the byte after the source buffer that has been used
R1 is bit field
R2 = the pointer to the byte after the destination data that has been filled
R3 can be corrupted

12

Codec conversion handler

Other registers preserved

Use

The codec conversion handler takes data passed into it, and writes it to the destination buffer.
The bit field is as follows:

Bit Value when set
0 Not all of the source data was used
1 Not all of the destination data was filled
2 – 31 Reserved (0)

If the codec does not use all of the source buffer, then the caller must add new data to the end of
the previous data (or copy the previous data and then append it) ready for the next call. R1 will
have bit 0 set on return.

If the codec requires the destination buffer to be completely filled, then the caller must add more
data to the source and call the codec again until bit 1 of R1 is set on return.

If there is not enough data in the source or the destination for the codec to function, then R0 and
R2 will be preserved. The caller will need to increase the amount of source data, and/or the
output buffer size.

The contextual data is used to maintain information required by the codec between calls.

Codec finalisation handler

This is an optional handler that allows a codec to tidy up any data it may have held outside its
contextual data.

On entry

R12 is the pointer to the codec contextual data

On exit

Registers preserved

Processor mode

Processor is in SVC or interrupt mode

Use

Not all codecs will require special finalisation code. Ordinarily, all that needs to happen is the
codec is not called any more – and AudioConductor simply deallocates the memory that had
been assigned to its contextual data.

Codecs should not store anything that is not in its contextual block, but if they do, then this
handler is used to inform them that this instance is about to be terminated.

13

Hardware interface

Hardware interface
The hardware interface is used by hardware drivers to interact with AudioConductor. Hardware
drivers need to ask AudioConductor to get data to play back, and tell AudioConductor that there
is data that has been recorded.

During registration, a hardware driver will pass in a control block, with the data at offset +12
being a pointer (or an offset from the module start) being “control code” that is called by
AudioConductor to provide the driver with configuration details.

Hardware interfaces must support 32-bit 2-channel audio if they want to support the shared
access system. Otherwise, they can only be used by applications that support their audio
formats.

Control code

This performs various functions depending on the reason code passed in to R0. Unused and
unsupported reason codes are to be ignored.

Control code 0

Sets up the addresses that the hardware driver needs to call in order to request or provide sample
data

On entry

R0 = 0 (reason code)
R1 = pointer to playback data request
R2 = pointer to recording data provision
R3 = value that must be passed into R12 on entry to either routine above

On exit

Registers preserved

Use

The hardware driver is provided with the addresses that it must call in order to request the
playback data, or to provide the recorded data.

The code that is called is essentially the same for both playback and recording, and is detailed
later.

Control code 1

Sets or queries the sample format for use for playback and recording.

On entry

R0 = 1 (reason code)
R1 = new sample format descriptor (or -1 to query)

On exit

R1 = previous sample format descriptor

14

Control code 1

Use

This call is used by AudioConductor to inform the hardware driver that the sample format needs
to be changed.

Control code 2

Sets or queries the sample rate for playback and recording.

On entry

R0 = 2 (reason code)
R1 = new sample rate or -1 to query (in Hz, multiplied by 1024)

On exit

R1 = previous sample rate (in Hz, multiplied by 1024)

Use

This call is used by AudioConductor to get or set the sample rate for use in playback or
recording.

Control code 3

Sets or queries the overall output volume or output mixer volume level.

On entry

R0 = 3 (reason code)
R1 = mixer channel number (0 for overall)
R2 = new output volume level (0 = silent, 255 = maximum volume, -1 to query)

On exit

R2 = previous output volume level

Use

This call is used by AudioConductor to get or set the overall output volume level, or the output
mixer level for the given channel number.

If R1 is 0 on entry, then the overall output volume level is being set (or queried).

Otherwise, R1 is set to the mixer channel number. The channels are defined by the hardware
capability bit flags, with mixer channel 1 indicating the channel with the lowest bit set in bits 16
– 27, mixer channel 2 indicating the channel with the second lowest bit and so forth.

Control code 4

Sets or queries the overall input volume or input mixer volume level.

On entry

R0 = 4 (reason code)
R1 = mixer channel number (or 0 for overall)

15

Control code 4

R2 = new input volume level (0 = silent, 255 = maximum volume, -1 to query)

On exit

R2 = previous input volume level

Use

This call is used by AudioConductor to get or set the overall input volume level, or the input
mixer level for the given channel number.

If R1 is 0 on entry, then the overall input volume level is being set (or queried).

Otherwise, R1 is set to the input mixer channel number. The channels are defined by the
hardware capability bit flags, with mixer 1 indicating the channel with the lowest bit set in bits 8
– 11, mixer 2 indicating the channel with the second lowest bit and so forth.

Control code 5

Enables or disables the playback and / or recording

On entry

R0 = 5 (reason code)
R1 = bit field

Bit Value when set
0 Enable playback
1 Enable recording
2 – 31 Reserved (0)

On exit

Registers preserved

Use

This call is used by AudioConductor to tell the hardware driver if it needs to perform a request
for playback data, or to provide recording data.

For example, if there are no playback or recording handlers attached to a device, then the device
does not need to request or provide any data.

Playback data request

The hardware driver calls the playback data request to get data.

On entry

R0 = pointer to playback buffer to fill in
R1 = length of playback buffer (in bytes)
R12 = value of R3 when given the playback request code pointer in Control code 0.

On exit

R0 = pointer to byte after filled data

16

Playback data request

Other registers preserved

Use

When the hardware device needs some data, the driver makes a call to the playback data request
passing in the pointer to a buffer in R0, and the length of the buffer in R1.

AudioConductor then goes through the list of audio playback handlers for them to fill the data,
merging with the previous data if necessary.

LPCM formats

It is guaranteed that the whole buffer will be filled in by the playback handler(s), so the return
value of R0 can be ignored by the hardware driver.

Non-LPCM formats

Not all of the data may be filled in when dealing with non-LPCM formats, and the value of R0
allows the hardware driver to determine how much of the buffer has actually been filled.

If the hardware driver requires more data, then it can call the playback data request code
repeatedly until it has enough data – although if the value of R0 does not change, then it must
assume that there is no more data ready, and cope with this accordingly.

Recording data provision

The hardware driver informs AudioConductor that there is data that has been captured.

On entry

R0 = pointer to buffer containing data
R1 = length of buffer (in bytes)
R12 = value of R3 when given the recording provision code pointer in Control code 0

On exit

Registers preserved

Use

When the hardware driver has recorded some data, it calls the recording data provision code to
inform AudioConductor that new data is present, with R0 pointing to the start of the data, and
R1 being the length of the data.

Any applications that are receiving this data must be able to handle all of this data, and when the
call returns, the hardware driver can assume that the data is no longer required.

This is true for both LPCM and non-LPCM formats.

17

Service calls

Service calls

Service_AudioConductorInitialised
(Service Call &81140)

The AudioConductor module is initialising, and applications and hardware devices can start to
register with it.

On entry

R0 = 0 for initialisation; 1 for finalisation; all other values reserved (these must be ignored)

On exit

All registers preserved

Use

Hardware drivers can use this service call to register their hardware devices with
AudioConductor so that applications can start to use them.

Finalisation is called so that hardware devices can stop providing their interrupts for audio
playback and recording – hardware drivers and codec providers do not need to deregister the
services they are supporting.

This service call must not be claimed.

18

Service_AudioConductorHardwareAdded

Service_AudioConductorHardwareAdded
(Service Call &81141)

A new hardware has been registered with AudioConductor.

On entry

R0 is the pointer to the hardware device identifier that has been added

On exit

All registers preserved

Use

This service call is issued when a new hardware device has been registered with
AudioConductor_RegisterDevice.

This service call must not be claimed.

19

Service_AudioConductorHardwareRemoved

Service_AudioConductorHardwareRemoved
(Service Call &81142)

Hardware has been removed from the system.

On entry

R0 is the hardware device identifier that has been removed

On exit

All registers preserved

Use

This service call is issued when hardware has been removed with
AudioConductor_DeregisterDevice.

All playback and recording handlers associated with the given device will automatically be
deregistered.

This service call must not be claimed.

20

Service_AudioConductorExclusiveAccessChanged

Service_AudioConductorExclusiveAccessChanged
(Service Call &81143)

Exclusive access to a hardware device has been changed.

On entry

R0 = the hardware device identifier that exclusive access has been registered
R2 = the new identifier (nominally WIMP handle) for the exclusive access (as passed into

AudioConductor_RegisterExclusiveAccess), or 0 if shared access is returned

On exit

All registers preserved

Use

This service call is issued when an application has requested exclusive access to an audio
device, and allows applications to indicate that they no longer need to play their audio.

This call is also issued when an application deregisters exclusive access, and control is passed
back to the previous application.

If an application deregisters exclusive access, and there were no previous exclusive
registrations, then -1 is returned to indicate that shared access is returned.

21

Service_AudioConductorRequestCodec

Service_AudioConductorRequestCodec
(Service Call &81144)

Used by applications and/or hardware drivers to request a codec.

On entry

R0 = source format descriptor
R2 = source sample rate (in Hz, multiplied by 1024)
R3 = destination format descriptor
R4 = destination sample rate (in Hz, multiplied by 1024)
R5 = bit flags

Bit Value when set
0 – 3 Quality indicator (0 = low quality, 15 = highest quality)
4 Codec will need to merge with existing data
5 Source sample rate is the maximum sample rate (0 is average sample rate)
6 Destination sample rate is the maximum sample rate (0 is the average sample rate)
7 Codec must support volume levels
8 – 31 Reserved (0)

On exit

If the codec is supported, then this service call is claimed, with the following registers set:

R0 = bit flags

Bit Value when set
0 – 1 Reserved (0)
2 Codec can support changing of sample rates without reconfiguring
3 – 31 Reserved (0)

R2 = pointer to codec provider name
R3 = pointer to codec initialisation code
R4 = pointer to codec finalisation code (zero if none)
R5 = size of contextual data needed

Use

This service call is used by an application or hardware device to request code to convert from
one format to another format, and/or one sample rate to another sample rate. For example:

• Applications can use this to convert a format that is present on a hard disk to another
format before passing it through to AudioConductor.

• Hardware devices can use this to convert the standard 32-bit, 2-channel LPCM format to a
format the device itself supports

If the codec is needed, then the application needs to allocate the amount of memory as indicated
by R5 (in an area of memory that will be available when the codec conversion code is called).

When the codec is no longer needed, the finalisation code needs to be called (if present)

22

Service_AudioConductorCodecRemoved

Service_AudioConductorCodecRemoved
(Service Call &81145)

A codec has been removed from AudioConductor.

On entry

R0 = the source format descriptor
R2 = the destination format descriptor
R3 = the pointer to the codec provider name

On exit

All registers preserved

Use

This service call is issued when a codec is deregistered. Applications should check the values
passed in – if R0 is 0, then all codecs supported by the provider are no longer valid; otherwise
the given source and destination formats are no longer supported.

If an application finds that its codec is no longer supported, then it must stop using that codec,
and either select a different codec, or stop any audio playback (or ignore incoming audio).

Applications do not need to deregister their codecs upon receipt of this service call.

23

Service_AudioConductorSampleRateChanged

Service_AudioConductorSampleRateChanged
(Service Call &81146)

Informs applications that the shared sample rate has been changed.

On entry

R0 = old sample rate (in Hz, multiplied by 1024)
R2 = new sample rate (in Hz, multiplied by 1024)
R3 = device identifier

On exit

All registers preserved

Use

This service call is issued when an application has requested the change of the sample rate of a
shared access hardware device. The sample rate affects both playback and recording, so
applications should adjust their playback and recording to accommodate the change.

Applications needing a codec to change the sample rate from one to another may need to change
their codec.

This service call is not issued when exclusive access has been given on the hardware device, as
only the application with exclusive access can change the sample rate.

24

SWI calls

SWI calls

AudioConductor_RegisterDevice
(SWI &5A080)

Registers a hardware device with AudioConductor.

On entry

R0 = pointer to user-orientated device name
R1 = pointer to device identifier (zero-terminated string)
R2 = pointer to device information block

+0 Bit flags of capabilities
+4 Maximum number of channels
+8 Pointer or offset to list of formats supported (zero if the hardware driver only

supports 2-channel 32-bit LPCM formatted data)
+12 Pointer or offset to control code

R3 = pointer to start of module if information block contains offsets, or 0 if information block
contains pointers

On exit

Registers preserved

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call is used by hardware to register a device with AudioConductor, providing it with a user-
orientated device name, and a device identifier (which must be unique across a system).

Applications should use the user-orientated device name when providing a list of options to the
user, but the device identifier when registering to transfer data with the audio device.

The bit flags are:

Bit Value when set
0 Device supports playback
1 Device supports recording
2 Device supports LPCM playback / recording
3 Device supports non-LPCM playback / recording

25

AudioConductor_RegisterDevice

4 – 7 Reserved (0)
8 Device supports microphone input
9 Device supports line input
10 Device supports digital input
11 – 15 Reserved (0)
16 Left front mixer is present
17 Right front mixer is present
18 Centre front mixer is present
19 Low frequency enhancement mixer is present
20 Left surround mixer is present
21 Right surround mixer is present
22 Left of centre mixer is present
23 Right of centre mixer is present
24 Surround mixer is present
25 Side left mixer is present
26 Side right mixer is present
27 Top mixer is present
28 Reserved (0)
29 Microphone input mixer is present
30 Line input mixer is present
31 Digital input mixer is present

R3 is used to inform AudioConductor that all the values in the information block (including the
format indicators) are either offsets from the module base to the value, or if they are pointers
themselves. This means that if the driver module is written in pure assembly, it does not need to
create the information block in temporary memory; it can simply pass in the module base
address as R3.

If R3 is 0 on entry, then all the values in the block (including the format indicators) are explicit
pointers.

26

AudioConductor_DeregisterDevice

AudioConductor_DeregisterDevice
(SWI &5A081)

Deregisters a device that has been registered with AudioConductor.

On entry

R1 = pointer to device identifier (zero-terminated string)

On exit

Registers preserved

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call is used to de-register a device with AudioConductor.

27

AudioConductor_EnumerateDevices

AudioConductor_EnumerateDevices
(SWI &5A082)

This call is used to find out the list of audio devices available on the system.

On entry

R1 = pointer to previous device identifier (or 0 to start)

On exit

R0 = pointer to user-orientated device name
R1 = pointer to device identifier (or 0 for end of list)
R2 = pointer to device information block (as per AudioConductor_RegisterDevice)

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by applications to determine the available audio devices that are available on
the system.

The first call an application would make starts with R1 set to 0. Upon return, R1 is updated to
point to the new device identifier name, along with the other registers that the application can
use to determine the device’s suitability for its needs

The application repeatedly calls this SWI until R1 is equal to zero.

If R1 is zero on entry and exit, then there are no audio devices present.

Note that the device information block pointed to by R2 has been converted to pointers.

28

AudioConductor_EnumerateDeviceFormats

AudioConductor_EnumerateDeviceFormats
(SWI &5A083)

Used to iterate over the list of device formats

On entry

R0 = 0 for first format, or previous format
R1 = device identifier

On exit

R0 = next device format, or 0 if no more present
Registers preserved

29

AudioConductor_EnumerateDeviceSampleRates

AudioConductor_EnumerateDeviceSampleRates
(SWI &5A084)

Used to iterate over the sample rates offered by a device, or query if a rate is possible

On entry

R0 = bit field

Bit Description when set
0 – 30 Sample rate in Hz multiplied by 1024
31 Get nearest sample rate

R1 = device identifier

On exit

R0 = next sample rate, or 0 if no more sample rates available (if bit 31 was clear on entry)
nearest sample rate (if bit 31 was set on entry)

Registers preserved

30

AudioConductor_RegisterExclusiveAccess

AudioConductor_RegisterExclusiveAccess
(SWI &5A08x)

This call is made by an application to register exclusive access to the audio device.

On entry

R1 = device identifier

On exit

R0 = unique identifier for the exclusive access

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

The value returned by R0 is a unique number that is allocated for this particular exclusive access
request. Applications must use it when de-registering their exclusive access.

If more than one application registers for exclusive access to a device, the most recently
registered application will have the access. When the application deregisters, the previous
application will have exclusive access again.

31

AudioConductor_DeregisterExclusiveAccess

AudioConductor_DeregisterExclusiveAccess
(SWI &&5A08x)

This call is made by an application to deregister exclusive access to the audio device.

On entry

R0 = unique identifier for the exclusive access (as given by
AudioConductor_RegisterExclusiveAccess)

On exit

Registers preserved

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

Applications will call this SWI when deregistering their exclusive access – for example, at
application termination. Control will pass back to the previous application that had exclusive
access – unless there are no exclusive applications remaining, in which case control passes back
to the shared sound system.

Note that an application can deregister itself when another application has exclusive access, and
it is removed from the list of applications having exclusive access to that device.

32

AudioConductor_SetFormat

AudioConductor_SetFormat
(SWI &5A085)

This call is used to set the audio playback and recording format.

On entry

R0 = basic format identifier, or -1 if querying the current playback format
R1 = pointer to device identifier (zero terminated string)
R2 = pointer to additional format information (0 if none provided)
R3 = unique identifier for exclusive access

On exit

R0 = previous basic format identifier
R1 preserved
R2 = pointer to previous additional format information (0 if none)

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used to set or query the audio playback and recording format.

If R0 = -1 on entry, then the other registers are ignored on entry, and the return values refer to
the current audio playback format. Otherwise, R0 and R1 specify the required audio playback
format.

This call can only be used when an exclusive access has been claimed on an audio device.

33

AudioConductor_SetSampleRate

AudioConductor_SetSampleRate
(SWI &5A087)

This call is used to get or set the current sample rate.

On entry

R0 = sample rate (in Hertz multiplied by 1024), or -1 to query
R1 = pointer to device identifier (zero terminated string)
R3 = unique identifier for the exclusive access (or 0 for using shared access)

On exit

R0 = previous sample rate
R1, R3 preserved

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

If R0 = -1 on entry, then R0 is set to the current sample rate (in Hertz multiplied by 1024).
Otherwise, R0 is the new sample rate, and is set to the previous sample rate on exit.

Note that this affects both playback and recording sample rate.

If an application is getting or setting the sample rate when using shared access, this will return
the sample rate of the shared access system; for exclusive access, it is the sample rate for that
exclusive access.

34

AudioConductor_AttachPlaybackHandler

AudioConductor_AttachPlaybackHandler
(SWI &5A088)

This call is used to attach a playback handler.

On entry

R0 = pointer to playback handler code
R1 = pointer to device identifier (zero terminated)
R2 = bit flags:

Bit Value when set
0 – 31 Reserved (0)

R3 = the unique access identifier, or 0 if registering as a shared playback handler
R4 = value of R12 passed into playback handler code

On exit

Registers preserved

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by an application to register a playback handler to provide audio to a hardware
device.

35

AudioConductor_AttachRecordingHandler

AudioConductor_AttachRecordingHandler
(SWI &5A08x)

This call is used to attach a recording handler.

On entry

R0 = pointer to record handler code
R1 = pointer to device identifier (zero terminated)
R2 = bit flags:

Bit Value when set
0 – 31 Reserved (0)

R3 = the unique access identifier, or 0 if registering as a shared playback handler
R4 = value of R12 passed into recording handler code

On exit

Registers preserved

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by an application to register a recording handler to receive audio from a
hardware device.

36

AudioConductor_DetachPlaybackHandler

AudioConductor_DetachPlaybackHandler
(SWI &5A088)

This call is used to attach a playback handler.

On entry

R0 = pointer to playback handler code
R1 = pointer to device identifier (zero terminated)

On exit

Registers preserved

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by an application to deregister a playback handler from a hardware device.

37

AudioConductor_DetachRecordingHandler

AudioConductor_DetachRecordingHandler
(SWI &5A08x)

This call is used to attach a recording handler.

On entry

R0 = pointer to record handler code
R1 = pointer to device identifier (zero terminated)

On exit

Registers preserved

Interrupts

Interrupt status is unaltered

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call is used by an application to deregister a recording handler from a hardware device.

38

AudioConductor_SetVolume

AudioConductor_SetVolume
(SWI &5A09x)

Gets or sets the mixer settings

On entry

R0 = bit field

Bit Value when set
0 – 7 Mixer number, or 0 for overall volume
8 – 30 Reserved (0)
31 Change input mixer (if clear, change output mixer)

R1 = mixer value (0 = silent, 255 = maximum, or -1 to read)
R2 = device identifier
R3 = unique exclusive identifier (or 0 for shared)

On exit

R1 = previous mixer value
Other registers preserved

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI is used to get or set the mixer values. For shared access, only the left and right
channels are available. For exclusive access, all channels can be changed.

39

AudioConductor_Configure

AudioConductor_Configure
(SWI &5A0Bx)

Configures AudioConductor

On entry

R0 = reason code
Other registers depend on reason code

On exit

R0 preserved
Other registers depend on reason code

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI provides a number of configuration options for AudioConductor.

The reason code values are as follows:

R0 Action
0 Mono mode

All other values are reserved

40

AudioConductor_Configure 0

AudioConductor_Configure 0
(SWI &5A09x)

Configures the shared access sound to be mono mode.

On entry

R0 = 0 (reason code)
R1 = device identifier
R2 = 0 => stereo mode, 1 => mono mode

On exit

R2 = previous stereo mode
Other registers preserved

Use

This is used to configure the shared sound system to output mono audio, by providing a stereo
to mono mix-down after all the audio playback handlers have filled their data.

Audio playback handlers are informed if the data is going to be mixed down to a mono playback
when they need to fill their buffers so they can use different routines for optimisation.

Mono mode would normally only be needed if there was a single speaker output, such as that
provided by an on-board sound system.

41

AudioConductor_EnumerateSharedHandlers

AudioConductor_EnumerateSharedHandlers
(SWI &5A08F)

Iterates over the list of shared playback or recording handlers

On entry

R0 = previous shared handler identity, or 0 to start
R1 = device identity

On exit

R0 = next shared handler identity, or 0 for no more
R1 preserved
R2 = WIMP task handle (if R0 <> 0 on exit)
R3 = volume for the playback handler (if R0 <> 0 on exit)

42

AudioConductor_SetSharedVolume

AudioConductor_SetSharedVolume
(SWI &5A090)

Sets the playback volume for a shared handler

On entry

R1 = device identity
R2 = WIMP task handle
R3 = new volume (0 = silent, 255 = maximum)

On exit

R3 = old volume
Other registers preserved

43

 Index

Table of Contents

Introduction and Overview...1
Audio capabilities – a brief history...1

AudioConductor API..3
Procedural interfaces...4

Audio format descriptors..5
Audio handlers..8

Playback handler code...9
Recording handler code...10

Codec interface...10
Codec configuration handler...10
Codec configuration 0...11
Codec configuration 1...11
Codec configuration 2...12
Codec conversion handler...12
Codec finalisation handler...13

Hardware interface...14
Control code..14
Control code 0...14
Control code 1...14
Control code 2...15
Control code 3...15
Control code 4...15
Control code 5...16
Playback data request..16
Recording data provision...17

Service calls..18
Service_AudioConductorInitialised..18
Service_AudioConductorHardwareAdded..19
Service_AudioConductorHardwareRemoved...20
Service_AudioConductorExclusiveAccessChanged...21
Service_AudioConductorRequestCodec...22
Service_AudioConductorCodecRemoved...23
Service_AudioConductorSampleRateChanged...24

SWI calls...25
AudioConductor_RegisterDevice...25
AudioConductor_DeregisterDevice..27
AudioConductor_EnumerateDevices..28
AudioConductor_EnumerateDeviceFormats..29
AudioConductor_EnumerateDeviceSampleRates...30
AudioConductor_RegisterExclusiveAccess..31
AudioConductor_DeregisterExclusiveAccess..32
AudioConductor_SetFormat...33
AudioConductor_SetSampleRate..34
AudioConductor_AttachPlaybackHandler..35
AudioConductor_AttachRecordingHandler..36
AudioConductor_DetachPlaybackHandler...37
AudioConductor_DetachRecordingHandler...38
AudioConductor_SetVolume...39
AudioConductor_Configure..40
AudioConductor_Configure 0...41
AudioConductor_EnumerateSharedHandlers...42

AudioConductor_SetSharedVolume

AudioConductor_SetSharedVolume...43

45

	Introduction and Overview
	Audio capabilities – a brief history

	AudioConductor API
	Procedural interfaces

	Audio format descriptors
	Audio handlers
	Playback handler code
	Recording handler code

	Codec interface
	Codec configuration handler
	Codec configuration 0
	Codec configuration 1
	Codec configuration 2
	Codec conversion handler
	Codec finalisation handler

	Hardware interface
	Control code
	Control code 0
	Control code 1
	Control code 2
	Control code 3
	Control code 4
	Control code 5
	Playback data request
	Recording data provision

	Service calls
	Service_AudioConductorInitialised
	Service_AudioConductorHardwareAdded
	Service_AudioConductorHardwareRemoved
	Service_AudioConductorExclusiveAccessChanged
	Service_AudioConductorRequestCodec
	Service_AudioConductorCodecRemoved
	Service_AudioConductorSampleRateChanged

	SWI calls
	AudioConductor_RegisterDevice
	AudioConductor_DeregisterDevice
	AudioConductor_EnumerateDevices
	AudioConductor_EnumerateDeviceFormats
	AudioConductor_EnumerateDeviceSampleRates
	AudioConductor_RegisterExclusiveAccess
	AudioConductor_DeregisterExclusiveAccess
	AudioConductor_SetFormat
	AudioConductor_SetSampleRate
	AudioConductor_AttachPlaybackHandler
	AudioConductor_AttachRecordingHandler
	AudioConductor_DetachPlaybackHandler
	AudioConductor_DetachRecordingHandler
	AudioConductor_SetVolume
	AudioConductor_Configure
	AudioConductor_Configure 0
	AudioConductor_EnumerateSharedHandlers
	AudioConductor_SetSharedVolume

